
Note:

1. gcd(a, b) denotes the greatest common divisor of integers a and b.

2. ⌊x⌋ denotes the largest integer less than or equal to x.

3. For a positive real number m,
√
m denotes the positive square root of m. For example,

√
4 = +2.

4. Unless otherwise stated all numbers are written in decimal notation.

Questions
1. The smallest positive integer that does not divide 1× 2× 3× 4× 5× 6× 7× 8× 9 is:

2. The number of four-digit odd numbers having digits 1, 2, 3, 4, each occuring exactly once, is:

3. The number obtained by taking the last two digits of 52024 in the same order is:

4. Let ABCD be a quadrilateral with ∠ADC = 70◦,∠ACD = 70◦, ∠ACB = 10◦ and ∠BAD = 110◦.
The measure of ∠CAB (in degrees) is:

5. Let a =
x

y
+

y

z
+

z

x
, let b =

x

z
+

y

x
+

z

y
and let c =

(
x

y
+

y

z

)(y
z
+

z

x

)(
z

x
+

x

y

)
. The value of |ab− c|

is:
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6. Find the number of triples of real numbers (a, b, c) such that a20 + b20 + c20 = a24 + b24 + c24 = 1.

7. Determine the sum of all possible surface areas of a cube two of whose vertices are (1, 2, 0) and
(3, 3, 2).

8. Let n be the smallest integer such that the sum of digits of n is divisible by 5 as well as the sum of
digits of (n+ 1) is divisible by 5. What are the first two digits of n in the same order?

9. Consider the grid of points X = {(m,n) | 0 ≤ m,n ≤ 4}. We say a pair of points {(a, b), (c, d)} in
X is a knight-move pair if (c = a ± 2 and d = b ± 1) or (c = a ± 1 and d = b ± 2). The number of
knight-move pairs in X is:
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10. Determine the number of positive integral values of p for which there exists a triangle with sides a, b,
and c which satisfy

a2 + (p2 + 9)b2 + 9c2 − 6ab− 6pbc = 0.

11. The positive real numbers a, b, c satisfy:

a

2b+ 1
+

2b

3c+ 1
+

3c

a+ 1
= 1

1

a+ 1
+

1

2b+ 1
+

1

3c+ 1
= 2

What is the value of
1

a
+

1

b
+

1

c
?

12. Consider a square ABCD of side length 16. Let E,F be points on CD such that CE = EF = FD.
Let the line BF and AE meet in M . The area of △MAB is:
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13. Three positive integers a, b, c with a > c satisfy the folowing equations:

ac+ b+ c = bc+ a+ 66, a+ b+ c = 32.

Find the value of a.

14. Initially, there are 380 particles at the origin (0, 0). At each step the particles are moved to points
above the x-axis as follows: if there are n particles at any point (x, y), then

⌊n
3

⌋
of them are moved

to (x+ 1, y + 1),
⌊n
3

⌋
are moved to (x, y + 1) and the remaining to (x− 1, y + 1). For example, after

the first step, there are 379 particles each at (1, 1), (0, 1) and (−1, 1). After the second step, there are
378 particles each at (−2, 2) and (2, 2), 2× 378 particles each at (−1, 2) and (1, 2), and 379 particles at
(0, 2). After 80 steps, the number of particles at (79, 80) is:

15. Let X be the set consisting of twenty positive integers n, n + 2, . . . , n + 38. The smallest value of n
for which any three numbers a, b, c ∈ X, not necessarily distinct, form the sides of an acute-angled
triangle is:
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16. Let f : R → R be a function satisfying the relation 4f(3 − x) + 3f(x) = x2 for any real x. Find the
value of f(27)− f(25) to the nearest integer. (Here R denotes the set of real numbers.)

17. Consider an isosceles triangle ABC with sides BC = 30, CA = AB = 20. Let D be the foot of the
perpendicular from A to BC, and let M be the midpoint of AD. Let PQ be a chord of the circumcircle
of triangle ABC, such that M lies on PQ and PQ is parallel to BC. The length of PQ is:

18. Let p, q be two-digit numbers neither of which are divisible by 10. Let r be the four-digit number by
putting the digits of p followed by the digits of q (in order). As p, q vary, a computer prints r on the
screen if gcd(p, q) = 1 and p + q divides r. Suppose that the largest number that is printed by the
computer is N . Determine the number formed by the last two digits of N (in the same order).
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19. Consider five points in the plane, with no three of them collinear. Every pair of points among them is
joined by a line. In how many ways can we color these lines by red or blue, so that no three of the
points form a triangle with lines of the same color.

20. On a natural number n you are allowed two operations: (1) multiply n by 2 or (2) subtract 3 from
n. For example starting with 8 you can reach 13 as follows: 8 → 16 → 13. You need two steps and
you cannot do in less than two steps. Starting from 11, what is the least number of steps required to
reach 121?

21. An intenger n is such that
⌊n
9

⌋
is a three digit number with equal digits, and

⌊
n− 172

4

⌋
is a 4 digit

number with the digits 2, 0, 2, 4 in some order. What is the remainder when n is divided by 100?
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22. In a triangle ABC, ∠BAC = 90◦. Let D be the point on BC such that AB + BD = AC + CD.

Suppose BD : DC = 2 : 1. If
AC

AB
=

m+
√
p

n
, where m,n are relatively prime positive integers and p

is a prime number, determine the value of m+ n+ p.

23. Consider the fourteen numbers, 14, 24, . . . , 144. The smallest natural number n such that they leave
distinct remainders when divided by n is:

24. Consider the set F of all polynomials whose coefficients are in the set of {0, 1}. Let q(x) = x3 +x+1.
The number of polynomials p(x) in F of degree 14 such that the product p(x)q(x) is also in F is:
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25. A finite set M of positive integers consists of distinct perfect squares and the number 92. The average
of the numbers in M is 85. If we remove 92 from M , the average drops to 84. If N2 is the largest
possible square in M , what is the value of N?

26. The sum of ⌊x⌋ for all real numbers x satisfying the equation 16 + 15x+ 15x2 = ⌊x⌋3 is:

27. In a triangle ABC, a point P in the interior of ABC is such that

∠BPC − ∠BAC = ∠CPA− ∠CBA = ∠APB − ∠ACB.

Suppose ∠BAC = 30◦ and AP = 12. Let D,E, F be the feet of perpendiculars form P on to
BC,CA,AB respectively. If m

√
n is the area of the triangle DEF where m,n are integers with

n prime, then what is the value of the product mn?
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28. Find the largest positive integer n < 30 such that
1

2
(n8 +3n4 − 4) is not divisible by the square of any

prime number.

29. Let n = 219312. Let M denote the number of positive divisors of n2 which are less than n but would
not divide n. What is the number formed by taking the last two digits of M (in the same order)?

30. Let ABC be a right-angled triangle with ∠B = 90◦. Let the length of the altitude BD be equal to 12.
What is the minimum possible length of AC, given that AC and the perimeter of triangle ABC are
integers?
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