Note:

- 1. gcd(a, b) denotes the greatest common divisor of integers a and b.
- 2. $\lfloor x \rfloor$ denotes the largest integer less than or equal to x.
- 3. For a positive real number m, \sqrt{m} denotes the positive square root of m. For example, $\sqrt{4} = +2$.
- 4. Unless otherwise stated all numbers are written in decimal notation.

Questions

- 1. The smallest positive integer that does not divide $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9$ is:
- 2. The number of four-digit odd numbers having digits 1, 2, 3, 4, each occurring exactly once, is:
- 3. The number obtained by taking the last two digits of 5^{2024} in the same order is:
- 4. Let ABCD be a quadrilateral with $\angle ADC = 70^\circ$, $\angle ACD = 70^\circ$, $\angle ACB = 10^\circ$ and $\angle BAD = 110^\circ$. The measure of $\angle CAB$ (in degrees) is:
- 5. Let $a = \frac{x}{2} + \frac{y}{2} + \frac{z}{2}$, let $b = \frac{x}{2} + \frac{y}{2} + \frac{z}{2}$ and let $c = \frac{x}{2} + \frac{y}{2} + \frac{z}{2} + \frac{x}{2}$.

 The value of |ab-c|y z x z x y y z z x x y

 is:

- 6. Find the number of triples of real numbers (a, b, c) such that $a^{20} + b^{20} + c^{20} = a^{24} + b^{24} + c^{24} = 1$.
- 7. Determine the sum of all possible surface areas of a cube two of whose vertices are (1, 2, 0) and (3, 3, 2).
- 8. Let n be the smallest integer such that the sum of digits of n is divisible by 5 as well as the sum of digits of (n + 1) is divisible by 5. What are the first two digits of n in the same order?

10. Determine the number of positive integral values of p for which there exists a triangle with sides a, b, and c which satisfy

$$a^2 + (p^2 + 9)b^2 + 9c^2 - 6ab - 6pbc = 0.$$

11. The positive real numbers a, b, c satisfy:

$$\frac{a}{2b+1} + \frac{2b}{3c+1} + \frac{3c}{a+1} = 1$$

$$\frac{1}{a+1} + \frac{1}{2b+1} + \frac{1}{3c+1} = 2$$

What is the value of 1 ± 1 _+

$$a$$
 b c

12. Consider a square ABCD of side length 16. Let E, F be points on CD such that CE = EF = FD.

Let the line BF and AE meet in M. The area of $\triangle MAB$ is:

13. Three positive integers a, b, c with a > c satisfy the following equations:

$$ac + b + c = bc + a + 66$$
, $a + b + c = 32$.

Find the value of *a*.

- 14. Initially, there are 3^{80} particles at the origin (0, 0). At each step the particles are moved to points above the *x*-axis as follows: if there are *n* particles at any point (x, y), then $\frac{n}{2}$ of them are moved $\frac{n}{2}$, are moved to (x, y + 1) and the remaining to (x + 1, y + 1). For example, after $\frac{n}{2}$ the first step, there are $\frac{n}{2}$ particles each at $\frac{n}{2}$ and $\frac{n}{2}$ particles each at $\frac{n}{2}$ and $\frac{n}{2}$ are moved to $\frac{n}{2}$ and $\frac{n}{2}$
 - 3^{78} particles each at (2, 2) and (2, 2), 2 3^{78} particles each at (1, 2) and (1, 2), and 3^{79} particles at
 - (0, 2). After 80 steps, the number of particles at (79, 80) is:
- 15. Let X be the set consisting of twenty positive integers n, n + 2, ..., n + 38. The smallest value of n for which any three numbers a, b, c X, not necessarily distinct, form the sides of an acute-angled triangle is:

- 16. Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying the relation $4f(3-x) + 3f(x) = x^2$ for any real x. Find the value of f(27) f(25) to the nearest integer. (Here \mathbb{R} denotes the set of real numbers.)
- 17. Consider an isosceles triangle ABC with sides BC = 30, CA = AB = 20. Let D be the foot of the perpendicular from A to BC, and let M be the midpoint of AD. Let PQ be a chord of the circumcircle of triangle ABC, such that M lies on PQ and PQ is parallel to BC. The length of PQ is:
- 18. Let p, q be two-digit numbers neither of which are divisible by 10. Let r be the four-digit number by putting the digits of p followed by the digits of q (in order). As p, q vary, a computer prints r on the screen if gcd(p, q) = 1 and p + q divides r. Suppose that the largest number that is printed by the computer is N. Determine the number formed by the last two digits of N (in the same order).

- 19. Consider five points in the plane, with no three of them collinear. Every pair of points among them isjoined by a line. In how many ways can we color these lines by red or blue, so that no three of the points form a triangle with lines of the same color.
- 20. On a natural number n you are allowed two operations: (1) multiply n by 2 or (2) subtract 3 from
 - n. For example starting with 8 you can reach 13 as follows: $8 \rightarrow 16$ 13. You need two steps and you cannot do in less than two steps. Starting from 11, what is the least number of steps required toreach 121?
- 21. An integer n is such that $\binom{n}{9}$ is a three digit number with equal digits, and $\binom{n-172}{4}$ is a 4 digit

number with the digits 2, 0, 2, 4 in some order. What is the remainder when n is divided by 100?

- 22. In a triangle ABC, $\angle BAC = 90^{\circ}$. Let $D/\underline{b}e$ the point on BC such that AB + BD Suppose ABC: DC = 2 : 1 If $\frac{AC}{n} = \frac{p}{n} + \frac{m}{n}$, where m, n are relatively prime positive is a prime number, determine the value of m + n + p.
- 23. Consider the fourteen numbers, 1^4 , 2^4 ,..., 14^4 . The smallest natural number n such that they leavedistinct remainders when divided by n is:
- 24. Consider the set F of all polynomials whose coefficients are in the set 0, 1 . Let $q(x) = x^3 + x + 1$. The number of polynomials p(x) in F of degree 14 such that the product p(x)q(x) is also in F is:

- 25. A finite set M of positive integers consists of distinct perfect squares and the number 92. The average of the numbers in M is 85. If we remove 92 from M, the average drops to 84. If N^2 is the largest possible square in M, what is the value of N?
- 26. The sum of [x] for all real numbers x satisfying the equation $16 + 15x + 15x^2 = [x]^3$ is:
- 27. In a triangle ABC, a point P in the interior of ABC is such that

$$\angle BPC - \angle BAC = \angle CPA - \angle CBA = \angle APB - \angle ACB$$
.

Suppose $\angle BAC = 30^\circ$ and $AP\sqrt{=_{\text{folim}}} P_{\text{ton}} P_{\text{ton}} E$, F be the feet of perpendiculars BC, CA, AB respectively. If \overline{m} n is the area of the triangle DEF where m, n are integers with n prime, then what is the value of the product mn?

- 28. Find the largest positive integer n < 30 such that $\frac{1}{2}(n^8 + 3n^4)$ 4) is not divisible by the square of any prime number.
- 29. Let $n = 2^{19}3^{12}$. Let M denote the number of positive divisors of n^2 which are less than n but wouldnot divide n. What is the number formed by taking the last two digits of M (in the same order)?
- 30. Let ABC be a right-angled triangle with $\angle B = 90^\circ$. Let the length of the altitude BD be equal to 12. What is the minimum possible length of AC, given that AC and the perimeter of triangle ABC are integers?

Answer Key

Problem Nos.(2 points)	Solution	Problem Nos.(3 points)	Solution	Problem Nos.(5 points)	Solution
1	11	11	12	21	91
2	12	12	96	22	34
3	25	13	19	23	31
4	70	14	80	24	50
5	01	15	92	25	22
6	06	16	08	26	33
7	99	17	25	27	27
8	49	18	13	28	20
9	48	19	12	29	28
10	05	20	10	30	25